Спектрофотометрия - метод исследования и анализа веществ, основанный на измерении спектров поглощения в оптической области электромагнитного излучения. Иногда под спектрофотометрией понимают раздел физики, объединяющий спектроскопию (как науку о спектрах электромагн. излучения), фотометрию и спектрометрию (как теорию и практику измерения соотв. интенсивности и длины волны (или частоты) электромагн. излучения). На практике спектрофотометрия часто отождествляют с оптической спектроскопией. По типам изучаемых систем спектрофотометрию обычно делят на молекулярную и атомную. Различают спектрофотометрию в ИК, видимой и УФ областях спектра.
Применение Спектрофотометрии в УФ и видимой областях спектра основано на поглощении электромагнитного излучения соединениями, содержащими хромофорные (напр., С = С, С=С, С=О) и ауксохромные (ОСН3, ОН, NH2 и др.) группы. Поглощение излучения в этих областях связано с возбуждением электронов s-, p-и n-орбиталей осн. состояния и переходами молекул в возбужденные состояния.
В ИК области проявляются переходы между колебательными и вращательными уровнями. Среди частот колебаний молекул выделяют т. наз. характеристические, которые практически постоянны по величине и всегда проявляются в спектрах хим. соед., содержащих определенные функц. группы (вследствие чего эти частоты иногда называют групповыми). Теория колебаний сложных молекул позволяет расчетным путем предсказать колебат. спектр соединений, т. е. определить частоты и интенсивности полос поглощения.
В ближней ИК области (10000-4000 см-1, или 1-2,5 мкм), где расположены обертоны и составные частоты осн. колебаний молекул, полосы поглощения имеют интенсивность в 102-103 раз меньше, чем в средней ИК области (4000-200 см-1). Это упрощает подготовку образцов, т.к. толщина поглощающего слоя может быть достаточно большой (до неск. мм и более). Экспериментальная техника для работы в этой области относительно проста. Однако чувствительность и селективность определения отдельных соединений невелики. Тем не менее высокое отношение сигнал/шум (до 105) создает хорошие условия для количественного анализа при содержании определяемого соединения ок. 1% и выше. Подобные анализы выполняются за 1 мин. В дальней ИК области (200-5 см-1) могут наблюдаться чисто вращат переходы.
Для измерения спектров используют спектральные приборы - спектрофотометры, основные части которого: источник излучения, диспергирующий элемент, кювета с исследуемым в-вом, регистрирующее устройство. В качестве источников излучения применяют дейтериевую (или водородную) лампу (в УФ области) и вольфрамовую лампу накаливания или галогенную лампу (в видимой и ближней ИК областях). Приемниками излучения служат фотоэлектронные умножители (ФЭУ) и фотоэлементы (фоторезисторы на основе PbS). Диспергирующими элементами прибора являются призмен-ный монохроматор или монохроматор с дифракц. решетками. Спектр получают в графич. форме, а в приборах со встроенной мини-ЭВМ - в графической и цифровой формах.
Для исследования спектров в ИК области используют обычно спектрофотометры, работающие в интервале от 1,0 до 50 мкм (от 10000 до 200 см-1). Основными источниками излучения в них являются стержень из кароида кремния (глобар), штифт из смеси оксидов циркония, тория и иттрия (штифт Нернста) и спираль из нихрома. Приемниками излучения служат термопары (термоэлементы), болометры, различные модели оптико-акустических приборов и пироэлектрические детекторы. В спектрофотометрах, сконструированных по классической схеме, в качестве диспергирующих элементов применяют призменный монохроматор или монохроматор с дифракционными решетками. С кон. 60-х гг. 20 в. выпускаются ИК фурье-спектрофотометры, которые обладают уникальными характеристиками: разрешающая способность-до 0,001 см-1, точность определения волнового числа v-до 10-4 см-1, время сканирования спектра может достигать 1 с, отношение сигнал/шум превышает 105. Эти приборы позволяют изучать образцы массой менее 1 нг. К ним также имеются разл. приставки для получения спектров отражения, исследования газов при малых или высоких давлениях, разных температурах и т. п. Встроенная в прибор мини-ЭВМ управляет прибором, выполняет фурье-преобразования, осуществляет накопление спектров, проводит обработку получаемой информации.